The projection of vecv→v onto vecu→u is
proj_(vecu)(vecv)= (< vecu, vecv >)/ (< vecu, vecu >) vecuproj→u(→v)=<→u,→v><→u,→u>→u
vecu = <4, -5, 9>→u=<4,−5,9>
vecv= <2, -7,1>→v=<2,−7,1>
The dot product is
< vecu, vecv > = <4, -5, 9> .<2, -7,1> <→u,→v>=<4,−5,9>.<2,−7,1>
=(4xx2)+(-5xx2)+(9xx1)=(4×2)+(−5×2)+(9×1)
=8-10+9=8−10+9
=7=7
The magnitude of vecu→u is
< vecu, vecu > = ||<4, -5, 9>|| =sqrt(4^2+(-5)^2+9^2)<→u,→u>=||<4,−5,9>||=√42+(−5)2+92
=sqrt(16+25+81)=√16+25+81
=sqrt122=√122
Therefore,
proj_(vecu)(vecv)=7/sqrt122<4, -5, 9>proj→u(→v)=7√122<4,−5,9>