What is the projection of <2,-7,1 ><2,7,1> onto <4,-5,9 ><4,5,9>?

1 Answer
Apr 22, 2018

The projection is =7/sqrt122<4, -5, 9>=7122<4,5,9>

Explanation:

The projection of vecvv onto vecuu is

proj_(vecu)(vecv)= (< vecu, vecv >)/ (< vecu, vecu >) vecuproju(v)=<u,v><u,u>u

vecu = <4, -5, 9>u=<4,5,9>

vecv= <2, -7,1>v=<2,7,1>

The dot product is

< vecu, vecv > = <4, -5, 9> .<2, -7,1> <u,v>=<4,5,9>.<2,7,1>

=(4xx2)+(-5xx2)+(9xx1)=(4×2)+(5×2)+(9×1)

=8-10+9=810+9

=7=7

The magnitude of vecuu is

< vecu, vecu > = ||<4, -5, 9>|| =sqrt(4^2+(-5)^2+9^2)<u,u>=||<4,5,9>||=42+(5)2+92

=sqrt(16+25+81)=16+25+81

=sqrt122=122

Therefore,

proj_(vecu)(vecv)=7/sqrt122<4, -5, 9>proju(v)=7122<4,5,9>