What is the projection of <4,-6,3 ><4,6,3> onto <1,5,2 ><1,5,2>?

1 Answer
Jun 4, 2018

The vector projection is =<-2/3,-10/3,-4/3> =<23,103,43>

Explanation:

The projection of vecvv onto vecuu is

proj_(vecu)(vecv)= (< vecu, vecv >)/ (< vecu, vecu >) vecuproju(v)=<u,v><u,u>u

vecu = <1, 5, 2>u=<1,5,2>

vecv= <4, -6,3>v=<4,6,3>

The dot product is

< vecu, vecv > = <1, 5, 2> .<4, -6,3> <u,v>=<1,5,2>.<4,6,3>

=(1xx4)+(5xx-6)+(2xx3)=(1×4)+(5×6)+(2×3)

=4-30+6=430+6

=-20=20

The magnitude of vecuu is

< vecu, vecu > = ||<1, 5, 2>|| =sqrt(1^2+(5)^2+2^2)<u,u>=||<1,5,2>||=12+(5)2+22

=sqrt(1+25+4)=1+25+4

=sqrt30=30

Therefore, the vector projection is

proj_(vecu)(vecv)=-20/30<1, 5, 2>proju(v)=2030<1,5,2>

= <-2/3,-10/3,-4/3>=<23,103,43>