The projection of vecv→v onto vecu→u is
proj_(vecu)(vecv)= (< vecu, vecv >)/ (< vecu, vecu >) vecuproj→u(→v)=<→u,→v><→u,→u>→u
vecu = <1, 5, 2>→u=<1,5,2>
vecv= <4, -6,3>→v=<4,−6,3>
The dot product is
< vecu, vecv > = <1, 5, 2> .<4, -6,3> <→u,→v>=<1,5,2>.<4,−6,3>
=(1xx4)+(5xx-6)+(2xx3)=(1×4)+(5×−6)+(2×3)
=4-30+6=4−30+6
=-20=−20
The magnitude of vecu→u is
< vecu, vecu > = ||<1, 5, 2>|| =sqrt(1^2+(5)^2+2^2)<→u,→u>=||<1,5,2>||=√12+(5)2+22
=sqrt(1+25+4)=√1+25+4
=sqrt30=√30
Therefore, the vector projection is
proj_(vecu)(vecv)=-20/30<1, 5, 2>proj→u(→v)=−2030<1,5,2>
= <-2/3,-10/3,-4/3>=<−23,−103,−43>