What is the projection of <-5,3,7 ><5,3,7> onto <0,8,-2 ><0,8,2>?

1 Answer
Nov 26, 2016

The projection is =〈0,20/17,-5/17〉=0,2017,517

Explanation:

Let veca=〈0,8,-2〉a=0,8,2

and vecb=〈-5,3,7〉b=5,3,7

The projection of vecbb onto vecaa is

=(veca.vecb)/(∥veca∥^2)veca=a.ba2a

Let's calculate the dot product

veca.vecb=〈0,8,-2〉.〈-5,3,7〉=0*-5+8*3*-2*7=0+24-14=10

Then, we calculate the modulus of veca

∥veca∥=∥〈0,8,-2〉∥=sqrt(0+64+4)=sqrt68

The ptojection is =10/68〈0,8,-2〉=5/34〈0,8,-2〉

=〈0,40/34,-10/34〉

=〈0,20/17,-5/17〉