What is the projection of <-6,2,1 ><6,2,1> onto <-5,1,3 ><5,1,3>?

1 Answer
Nov 6, 2016

The projection is =-5/7〈-5,1,3〉=575,1,3

Explanation:

The vector projection of vecbb onto vecaa is given by
=(veca.vecb)/(∥veca∥*∥veca∥)veca=a.baaa

Here vecb=〈6,2,1〉b=6,2,1 and veca=〈-5,1,3〉a=5,1,3

The dot product veca.vecb=〈-5,1,3〉.〈6,2,1〉=-30+2+3=-25a.b=5,1,3.6,2,1=30+2+3=25

The modulus of veca=(∥veca∥=∥〈-5,1,3〉∥=sqrt(25+1+9)=sqrt35a=(a=5,1,3=25+1+9=35

:. the projection =-25/(sqrt35)^2〈-5,1,3〉=-25/35〈-5,1,3〉

=-5/7〈-5,1,3〉