What is the projection of <6,-4,8 ><6,4,8> onto <-1,3,-7 ><1,3,7>?

1 Answer
Jul 21, 2017

The vector projection is =-74/59<-1,3,-7>=7459<1,3,7>
The scalar projection is =-61/sqrt59=6159

Explanation:

Let vecb= <6,-4,8>b=<6,4,8> and veca= <-1,3,-7>a=<1,3,7>

The vector projection of vecbb over vecaa is

=(veca.vecb)/(||veca||^2)*veca=a.ba2a

The dot product is

veca.vecb=<6,-4,8> . <-1,3,-7> =(6*-1)+(-4*3)+(8*-7)a.b=<6,4,8>.<1,3,7>=(61)+(43)+(87)

=-6-12-56=-74=61256=74

The modulus of vecaa is

||<-1,3,-7>|| =sqrt(1+9+49) = sqrt59||<1,3,7>||=1+9+49=59

Therefore,

The vector projection is

=-74/59<-1,3,-7>=7459<1,3,7>

The scalar projection is

=(veca.vecb)/(||veca||)=-61/sqrt59=a.ba=6159