What is the projection of < 6 , -6 ,3 ><6,6,3> onto < 4, 9, 1><4,9,1>?

1 Answer
Jan 21, 2017

The vector projection is =-27/98<4,9,1>=2798<4,9,1>
The scalar projection is =-27/sqrt98=2798

Explanation:

The vector projection of vecbb onto vecaa is

=(veca.vecb)/(|veca|^2)*veca=a.ba2a

The dot product is

veca.vecb=<6,-6,3>.<4,9,1>=24-54+3=-27a.b=<6,6,3>.<4,9,12454+3=27

The modulus is

|veca|=|<4,9,1>|=sqrt(16+81+1)=sqrt98a=|<4,9,1>|=16+81+1=98

The vector projection is =-27/98<4,9,1>=2798<4,9,1>

The scalar projection is

#=veca.vecb/|veca|=-27/sqrt98#