What is the projection of <7,-8,3 ><7,8,3> onto <5,-6,1 ><5,6,1>?

1 Answer
Feb 19, 2017

The vector projection is =43/31<5,-6,1>=4331<5,6,1>
The scalar projection is =86/sqrt62=8662

Explanation:

The vector projection of vecbb onto vecaa is

=(veca.vecb)/(|veca|^2)*veca=a.ba2a

The dot product is

veca.vecb=<5,-6,1>*<7,-8,3>a.b=<5,6,1><7,8,3>

=5*7+(-6*-8)+3*1=57+(68)+31

=35+48+3=35+48+3

=86=86

The modulus of vecaa is

||veca||=||<5,-6,1>||a=||<5,6,1>||

=sqrt(25+36+1)=25+36+1

=sqrt62=62

The vector projection is

=86/62*<5,-6,1>=8662<5,6,1>

=43/31<5,-6,1>=4331<5,6,1>

The scalar projection is

=(veca.vecb)/(||veca||)=a.ba

=86/sqrt62=8662