What is the projection of <8,2,1 ><8,2,1> onto <9,6,3 ><9,6,3>?

1 Answer
Dec 21, 2016

The answer is =87/126〈9,6,3〉=871269,6,3

Explanation:

The vector projection of vecbb onto vecaa is

=(veca.vecb)/(∥veca∥^2)veca=a.ba2a

The dot product is veca.vecb=〈8,2,1〉.〈9,6,3〉a.b=8,2,1.9,6,3

=(72+12+3)=87=(72+12+3)=87

The modulus of vecaa is =∥veca∥=∥〈9,6,3〉∥=a=9,6,3

=sqrt(81+36+9)=sqrt126=81+36+9=126

The vector projection is =87/126〈9,6,3〉=871269,6,3