What is the projection of (i -2j + 3k)(i2j+3k) onto ( 2i+j+2k)(2i+j+2k)?

1 Answer
Jul 8, 2018

The projection is =<1,1/2,1/2>=<1,12,12>

Explanation:

The projection of vecbb onto vecaa is

proj_(veca)vecb=(veca.vecb)/(||veca||)^2vecaprojab=a.b(a)2a

The vectors are

veca= <2,1,1 >a=<2,1,1>

and

vecb= <1,-2,3>b=<1,2,3>

The dot product is

veca.vecb= <2,1,1 > . <1,-2,3> a.b=<2,1,1>.<1,2,3>

= (2xx1)+(1xx(-2))+ 1xx3=2-2+3=3=(2×1)+(1×(2))+1×3=22+3=3

The magnitude of veca a is

||veca|| = <2,1,1> = sqrt(2^2+1^2+1^2)=sqrt6a=<2,1,1>=22+12+12=6

Therefore,

proj_(veca)vecb=(3)/(6)*<2,1,1 >projab=36<2,1,1>

= <1,1/2,1/2>=<1,12,12>