What is the range of a quadratic function?
1 Answer
The range of
{ ([c-b^2/(4a), oo) " if " a > 0), ((-oo, c-b^2/(4a)] " if " a < 0) :}
Explanation:
Given a quadratic function:
f(x) = ax^2+bx+c" " witha != 0
We can complete the square to find:
f(x) = a(x+b/(2a))^2+(c-b^2/(4a))
For real values of
Then:
f(-b/(2a)) = c - b^2/(4a)
If
If
Another way of looking at this is to let
Given:
y = ax^2+bx+c
Subtract
ax^2+bx+(c-y) = 0
The discriminant
Delta = b^2-4a(c-y) = (b^2-4ac)+4ay
In order to have real solutions, we require
(b^2-4ac)+4ay >= 0
Add
4ay >= 4ac-b^2
If
y >= c-b^2/(4a)
If
y <= c-b^2/(4a)