What is the range of the function ?
y=(4x-3)/(2x)y=4x−32x
1 Answer
Dec 28, 2017
Explanation:
Given:
y = (4x-3)/(2x)= 2-3/(2x)y=4x−32x=2−32x
Then:
3/(2x)=2-y32x=2−y
So taking the reciprocal of both sides:
2/3x = 1/(2-y)23x=12−y
Multiplying both sides by
x = 3/(2(2-y))x=32(2−y)
So for any
y = (4x-2)/(2x)y=4x−22x
So the range is the whole of the real numbers except
(-oo, 2) uu (2, oo)(−∞,2)∪(2,∞)
graph{y = (4x-3)/(2x) [-10, 10, -5, 5]}