What is the range of the function f(x)=1/(1+e^-x)f(x)=11+ex?

1 Answer
Aug 10, 2017

The range is (0,1)(0,1)

Explanation:

The function is f(x)=1/(1+e^-x)f(x)=11+ex

The domain of the functions e^xex and e^-xex are RR

The domain of f(x) is D_f(x)=RR

We calculate the limits to +-oo of f(x)

lim_(x->+oo)f(x)=lim_(x->+oo)1/(1+e^-x)=1/(1+0)=1

lim_(x->-oo)f(x)=lim_(x->-oo)1/(1+e^-x)=1/(1+oo)=0

Therefore,

The range is (0,1)

graph{1/(1+e^-x) [-7.9, 7.904, -3.95, 3.95]}