What is the remainder when #x^4-3x^2+7x+3# is divided by #x-2#?

2 Answers
Jul 11, 2017

#"remainder "=21#

Explanation:

#"one way of dividing is to use the divisor as a factor in "#
#"the numerator"#

#"consider the numerator"#

#color(red)(x^3)(x-2)color(magenta)(+2x^3)-3x^2+7x+3#

#=color(red)(x^3)(x-2)color(red)(+2x^2)(x-2)color(magenta)(+4x^2)-3x^2+7x+3#

#=color(red)(x^3)(x-2)color(red)(+2x^2)(x-2)color(red)(+x)(x-2)color(magenta)(+2x)+7x+3#

#=color(red)(x^3)(x-2)color(red)(+2x^2)(x-2)color(red)(+x)(x-2)color(red)(+9)(x-2)color(magenta)(+18)+3#

#=color(red)(x^3)(x-2)color(red)(+2x^2)(x-2)color(red)(+x)(x-2)color(red)(+9)(x-2)+21#

#"quotient "=color(red)(x^3+2x^2+x+9)," remainder "=21#

Jul 12, 2017

#21#

Explanation:

We can use the Remainder theorem , which states;

#"For the Polynomial "P(x) " its remainder on division by "#

#(x-a) " is "P(a)#

proof

#(x-a)" a factor of "P(x)#

#=>P(x)=(x-a)Q(x)+R---(1)#

where

#Q(x)" is the quotient polynomial"#

#R=" the remainder"#

taking #(1)#

#P(a)=cancel((a-a)Q(a))+R#

#:.P(a)=R#

so we have

#P(x)=x^4-3x^2+7x+3#

it is to be divided by

#(x-2)#

#:. " we require "P(2)#

#P(2)=2^4-3xx2^2+7xx2+3#

#P(2)=16-12+14+3#

#P(2)=21#