What is the second derivative of f(t) = (3e^-2t) - (5e^-t) ?

1 Answer
Aug 5, 2018

(d^2y)/(dt^2) = - 5/ e^t

Explanation:

f(t) = (3 e^(-2)t) - (5 e^(-t)) or

f(t) = (3/ e^2 t) - (5 e^(-t)) or

f^'(t) = (3/ e^2 ) - (5 e^(-t)*(-1)) or

f^'(t) = (3/ e^2 ) + (5 e^(-t)) or

(d^2y)/(dt^2) = 0 + (5 e^(-t)*(-1)) or

(d^2y)/(dt^2) = - (5 e^(-t)) or

(d^2y)/(dt^2) = - 5/ e^t [Ans]