What is the second derivative of f(x)=cot(3x^2-x)f(x)=cot(3x2x)?

1 Answer
Dec 30, 2015

First derivative:

Use the chain rule, which states that d/dx(cot(u))=-csc^2(u)*(du)/dxddx(cot(u))=csc2(u)dudx

Thus,

f'(x)=-csc^2(3x^2-x)*d/dx(3x^2-x)

=>-(6x-1)csc^2(3x^2-x)

Second derivative:

Use product rule in conjunction with the chain rule again.

When doing chain rule with the cosecant function squared, the overriding issue will be the exponent, and then the cosecant.

f''(x)=-csc^2(3x^2-x)d/dx(6x-1)-(6x-1)d/dx(csc^2(3x^2-x))

Find each derivative.

d/dx(6x-1)=6

d/dx(csc^2(3x^2-x))=2csc(3x^2-x)d/dx(csc(3x^2-x))

color(white)(ssss) Recall that d/dx(csc(u))=-csc(u)cot(u)*(du)/dx.

=>2csc(3x^2-x) * -csc(3x^2-x)cot(3x^2-x) * (6x-1)

=>-2(6x-1)csc^2(3x^2-x)cot(3x^2-x)

Plug both the derivatives back in to find f''(x).

f''(x)=-6csc^2(3x^2-x)+2(6x-1)^2csc^2(3x^2-x)cot(3x^2-x)

This can be further simplified, if you want:

f''(x)=((72x^2-24x+2)cot(3x^2-x)-6)csc^2(3x^2-x)