What is the second derivative of f(x)=csc(3x^2-x)f(x)=csc(3x2x)?

1 Answer
Mar 3, 2018

f'(x) = -csc(3x^2-x)cot(3x^2-x) * (6x-1)

Explanation:

f(x) = csc(3x^2-x)
f'(x) = -csc(3x^2-x)cot(3x^2-x) * d/dx(3x^2-x) (cscx derivative and chain rule )

f'(x) = -csc(3x^2-x)cot(3x^2-x) * (6x-1)

derivative of csc(x):

csc(x) = 1/sin(x)

d/dx(csc(x)) = d/dx(1/sin(x))

=(sin(x)d/dx(1)-1(d/dx(sin(x))))/(sin^2(x))

=(sin(x)(0)-(cos(x)))/(sin^2(x))

=(-(cos(x)))/(sin^2(x))

=-1/sin(x) * cos(x)/sin(x)

=-csc(x)cot(x)