What is the second derivative of f(x)= e^sqrt(3x-7)?

1 Answer
Jan 12, 2016

f''(x)=(((2sqrt(3x-7))* 9/2e^sqrt(3x-7)(3x-7)^(-1/2))-3e^(sqrt(3x-7)) *3(3x-7)^(-1/2))/(4(3x-7))

Explanation:

By use of the chain rule, power rule, and quotient rule, we get :

f'(x)=e^(sqrt(3x-7)) * 1/2(3x-7)^(-1/2) * (3)

=(3e^(sqrt(3x-7)))/(2sqrt(3x-7)).

therefore f''(x)=(((2sqrt(3x-7))* 9/2e^sqrt(3x-7)(3x-7)^(-1/2))-3e^(sqrt(3x-7)) *3(3x-7)^(-1/2))/(4(3x-7))