What is the second derivative of f(x)= ln (x^2+2x)?

1 Answer
Jan 13, 2016

f''(x) =-4(x+1)/(x^2+2)^2

Explanation:

Use the substitution t = x^2+2x
Then f(x) = lnt

(df)/dt = 1/t
(dt)/dx =2x +2

(df)/dx = (df)/dt * (dt)/dx = (1/(x^2+2x))* (2x+2)
f'(x) = (2(x+1))/(x^2+2x)

We can now use the quotient rule to find the second derivative

f''(x) = ((x^2+2x)*2 - 2(x+1)*(2x+2))/(x^2+2)^2

f''(x) = (2x^2 +4x -2x^2 - 8x -4)/(x^2+2)^2
f''(x) =-4(x+1)/(x^2+2)^2