What is the second derivative of f(x)=-sec2x-cotx ?

1 Answer
Jul 8, 2016

f''(x)=-4sec2x{sec^2(2x)+tan^2(2x)}-2csc^2xcotx.

Explanation:

f(x)=-sec2x-cotx
rArr f'(x)=(-sec2x)'-(cotx)'=-sec2x*tan2x*d/dx(2x)-(-csc^2x)
=-2sec2x*tan2x+csc^2x
rArr f''(x)={f'(x)}'=(-2sec2xtan2x)'+{(cscx)^2}'.
=-2{sec2x*(tan2x)'+tan2x*(sec2x)'}+2cscx*(cscx)', ......[Product Rule & Chain Rule]
=-2[sec2x*{sec^2(2x)*2}+tan2x{sec2x*tan2x*2}]+2cscx(-cscx*cotx),
=-2{2sec^3(2x)+2sec2x*tan^2(2x)}-2csc^2xcotx,
=-4sec2x{sec^2(2x)+tan^2(2x)}-2csc^2xcotx.