What is the second derivative of f(x)= sin(sqrt(3x-7))?
1 Answer
Explanation:
Finding the first derivative:
Use the chain rule (many times).
First Issue: the sine function.
f'(x)=cos(sqrt(3x-7))*d/dx[sqrt(3x-7)]
Second Issue: the square root.
f'(x)=cos(sqrt(3x-7))*3/(2sqrt(3x-7))=color(blue)((3cos(sqrt(3x-7)))/(2sqrt(3x-7))
Finding the second derivative:
Use the quotient rule (and more chain rule).
f''(x)=(2sqrt(3x-7)color(green)(d/dx[3cos(sqrt(3x-7))])-3cos(sqrt(3x-7))color(red)(d/dx[2sqrt(3x-7)]))/(2sqrt(3x-7))^2
Find each internal derivative separately:
d/dx[3cos(sqrt(3x-7))]
This will be almost identical to finding
color(green)(d/dx[3cos(sqrt(3x-7))]=(-9sin(sqrt(3x-7)))/(2sqrt(3x-7))
The other derivative is
d/dx[2sqrt(3x-7)]
This, again, will be twice what we determined earlier, since we've basically already done this differentiation.
color(red)(d/dx[2sqrt(3x-7)]=3/sqrt(3x-7)
Plug these back in.
f''(x)=((2sqrt(3x-7)(-9sin(sqrt(3x-7))))/(2sqrt(3x-7))-(9cos(sqrt(3x-7)))/sqrt(3x-7))/(4(3x-7))
Further simplification yields:
f''(x)=(-9(sqrt(3x-7)sin(sqrt(3x-7))+cos(sqrt(3x-7))))/(4(3x-7)^(3/2)