f(x)=(x-1)/(x^2+1).
Using the Quotient Rule for Diffn., we get, the first deri.,
f'(x)={(x^2+1)d/dx(x-1)-(x-1)d/dx(x^2+1)}/(x^2+1)^2
={(x^2+1)(1)-(x-1)(2x)}/(x^2+1)^2={x^2+1-2x^2+2x}/(x^2+1)^2
:. f'(x)=(1+2x-x^2)/(1+2x^2+x^4)
Rediff.ing f'(x) to get second deri.,
f''(x)={(1+x^2)^2d/dx(1+2x-x^2)-(1+2x-x^2)d/dx(1+2x^2+x^4)}/{(x^2+1)^2}^2
={(1+x^2)^2(2-2x)-(1+2x-x^2)(4x+4x^3)}/(x^2+1)^4
={2(1+x^2)^2(1-x)-4x(1+x^2)(1+2x-x^2)}/(x^2+1)^4
=[2(1+x^2){(1+x^2)(1-x)-2x(1+2x-x^2)}]/(x^2+1)^4
=[2(1+x^2){1+x^2-x-x^3-2x-4x^2+2x^3}]/(x^2+1)^4
:. f''(x)={2(1-3x-3x^2+x^3)}/(1+x^2)^3.
=[2{(1+x^3)-3x(1+x)}]/(1+x^2)^3
=[2{(1+x)(1-x+x^2)-3x(1+x)}]/(1+x^2)^3
=[2(1+x)(1-x+x^2-3x)}/(1+x^2)^3
rArr f''(x)={2(1+x)(1-4x+x^2)}/(1+x^2)^3
Enjoy Maths.!