What is the second derivative of f(x)=(x^2-x^3)^(1/3)?

1 Answer
Jan 30, 2016

1/3(2-6x)(x^2-x^3)^(-2/3){1-((4-6x))/((3x-3x^2))}

Explanation:

here,
f(x)=(x^2-x^3)^(1/3)

so, the first derivative is,

fprime(x)=d/(dx)(f(x))

=d/(dx)(x^2-x^3)^(1/3)

=1/3(x^2-x^3)^(1/3-1)d/(dx)(x^2-x^3)

=1/3(x^2-x^3)^(-2/3)(2x-3x^2)

so the second derivative is,

fprimeprime(x)=d/(dx)(fprime(x))

=d/(dx)(1/3(x^2-x^3)^(-2/3)(2x-3x^2))

=1/3d/(dx)((2x-3x^2)(x^2-x^3)^(-2/3))

=1/3{(2x-3x^2)d/(dx)(x^2-x^3)^(-2/3)+(x^2-x^3)^(-2/3)d/(dx)(2x-3x^2)}

=1/3{-2/3(2x-3x^2)(x^2-x^3)^(-5/3)(2-6x)+(x^2-x^3)^(-2/3)(2-6x)}

=1/3(2-6x)(x^2-x^3)^(-2/3){-2/3((2x-3x^2)/(x^2-x^3))+1}

=1/3(2-6x)(x^2-x^3)^(-2/3){-2/3((cancel(x)(2-3x))/(cancel(x)(x-x^2))+1}

=1/3(2-6x)(x^2-x^3)^(-2/3){1-((4-6x))/((3x-3x^2))}