What is the second derivative of f(x)=x/(x^2 + 1) ^2?

1 Answer
Dec 26, 2015

f''(x)=(12x(x^2-1))/(x^2+1)^4

Explanation:

Use the quotient rule: for a function f(x)=(g(x))/(h(x)),

f'(x)=(g'(x)h(x)-h'(x)g(x))/(h(x))^2

g(x)=x
h(x)=(x^2+1)^2

g'(x)=1
h'(x)=4x(x^2+1)

Thus,

f'(x)=(1(x^2+1)^2-4x(x^2+1)(x))/(x^2+1)^4

Simplify.

f'(x)=((x^2+1)(x^2+1-4x^2))/(x^2+1)^4

f'(x)=(1-3x^2)/(x^2+1)^3color(white)(sss) First Derivative

To find the second derivative, use the quotient rule again.

g(x)=1-3x^2
h(x)=(x^2+1)^3

g'(x)=-6x
h'(x)=6x(x^2+1)^2

Thus,

f''(x)=(-6x(x^2+1)^3-6x(x^2+1)^2(1-3x^2))/(x^2+1)^6

Simplify.

f''(x)=(-6x(x^2+1)^2(x^2+1+1-3x^2))/(x^2+1)^6

f''(x)=(-6x(-2x^2+2))/(x^2+1)^4

f''(x)=(12x(x^2-1))/(x^2+1)^4color(white)(sss) Second Derivative

The main two pitfalls here are

  1. algebra
  2. remembering to use the chain rule when differentiating things like (x^2+1)^2