What is the second derivative of f(x)= xe^(x^2)f(x)=xex2?

1 Answer
May 23, 2018

f''(x) = (4x^3+6x)e^(x^2)

Explanation:

f(x) = xe^(x^2)

Apply product rule..

f'(x) = x * d/dx(e^(x^2)) + d/dx x * e^(x^2)

Apply standard differential and chain rule.

f'(x) = x* e^(x^2)* 2x + 1 * e^(x^2)

= (2x^2+1)e^(x^2)

Apply product rule.

f''(x) = (2x^2+1) * d/dx (e^(x^2)) + d/dx (2x^2+1) * e^(x^2)

= (2x^2+1) * 2x* e^(x^2) + 4x*e^(x^2)

= (4x^3 +2x + 4x)e^(x^2)

= (4x^3+6x)e^(x^2)