What is the slope of the tangent line of 1/(e^y-e^x) = C 1ey−ex=C, where C is an arbitrary constant, at (-2,1)(−2,1)?
1 Answer
Aug 6, 2016
The slope is
Explanation:
This will be easier rewritten as:
(e^y-e^x)^-1=C(ey−ex)−1=C
Now, we can use implicit differentiation (remember that each occurrence of
-(e^y-e^x)^-2*d/dx(e^y-e^x)=0−(ey−ex)−2⋅ddx(ey−ex)=0
-1/(e^y-e^x)^2(e^y*dy/dx-e^x)=0−1(ey−ex)2(ey⋅dydx−ex)=0
(e^x-e^y(dy/dx))/(e^y-e^x)^2=0ex−ey(dydx)(ey−ex)2=0
So, we want to solve for
(e^-2-e^1(dy/dx))/(e^1-e^-2)^2=0e−2−e1(dydx)(e1−e−2)2=0
Cross-multiplying:
1/e^2-e(dy/dx)=01e2−e(dydx)=0
dy/dx=1/e^3dydx=1e3