What is the solution set for #(x-2)/(x+4)=2-(4/x)#?

1 Answer
Aug 26, 2015

I found:
#x_1=-8#
#x_2=2#

Explanation:

We can use as common denominator: #x(x+4)# to get:
#(x(x-2))/(x(x+4))=(2x(x+4)-4(x+4))/(x(x+4))#
We can cancel out both denominators and multiply:
#x^2-2x=2x^2+8x-4x-16# rearranging:
#x^2+6x-16=0#
We use the Quadratic Formula:
#x_(1,2)=(-6+-sqrt(36+64))/2=#
#x_(1,2)=(-6+-10)/2=#
So:
#x_1=-8#
#x_2=2#