What is the square root of -8?

3 Answers
Jul 22, 2018

pm2isqrt2

Explanation:

We have the following:

sqrt(-8)

We can rewrite this as

color(steelblue)(sqrt8)*color(purple)(sqrt(-1))

Recall that i=sqrt(-1)

We can further break this down as

color(steelblue)(sqrt(4)*sqrt2)*color(purple)i, or

pm2isqrt2

Hope this helps!

\sqrt{-8}=\pm 2i\sqrt2

Explanation:

The square root of -8 is given

\sqrt{-8}

=(-8)^{1/2}

=(8(\cos\pi+i\sin\pi))^{1/2}

=8^{1/2}(\cos\pi+i\sin\pi)^{1/2}

=2\sqrt2(\cos(2k\pi+\pi)+i\sin(2k\pi+\pi))^{1/2}

=2\sqrt2(\cos((2k+1)\pi)+i\sin((2k+1)\pi))^{1/2}

=2\sqrt2(\cos({(2k+1)\pi}/2)+i\sin({(2k+1)\pi}/2))

Where, k=0, 1

Now, setting k=0 & k=1, we get two values as follows

\sqrt{-8}=2\sqrt2(\cos({(2(0)+1)\pi}/2)+i\sin({(2(0)+1)\pi}/2))

\sqrt{-8}=2i\sqrt2 &

\sqrt{-8}=2\sqrt2(\cos({(2(1)+1)\pi}/2)+i\sin({(2(1)+1)\pi}/2))

\sqrt{-8}=-2i\sqrt2

\therefore \sqrt{-8}=\pm 2i\sqrt2

Jul 22, 2018

color(green)(sqrt(-8)=2sqrt2i or sqrt(-8)=-2sqrt2i

Explanation:

Let ,

x=sqrt(-8)...tox!inRR, but , x in CC

Squaring both sides

x^2=-8=8(-1)

:.x^2=8i^2 to[because i^2=-1]

:.x^2-8i^2=0

:.x^2-(2sqrt2 i)^2=0

:.(x-2sqrt2i)(x+2sqrt2i)=0to[color(blue)(because a^2- b^2=color(blue)((a-b)(a+b))]

:.x-2sqrt2i=0 or x+2sqrt2i=0

:.x=2sqrt2i or x=-2sqrt2i

:.color(green)(sqrt(-8)=2sqrt2i or sqrt(-8)=-2sqrt2i
...................................................................................

Note: If x=sqrt8=sqrt(4 xx2)=sqrt((2sqrt2)^2)

:.color(red)(x=sqrt8=+-2sqrt2 inRR