Simplify this sqrt(9^(16x^2)) 916x2 ?

3 Answers
Sep 9, 2015

sqrt(9^(16x^2)) = 9^(8x^2) = 43,046,721^(x^2)916x2=98x2=43,046,721x2
(assuming you only want the primary square root)

Explanation:

Since b^(2m) = (b^m)^2b2m=(bm)2

sqrt(9^(16x^2)) = sqrt((9^(8x^2))^2)916x2=(98x2)2

color(white)("XXX") = 9^(8x^2)XXX=98x2

color(white)("XXX") = (9^8)^(x^2)XXX=(98)x2

color(white)("XXX")=43,046,721^(x^2)XXX=43,046,721x2

Sep 9, 2015

3^(16x^2)316x2 or 9^(8x^2)98x2

Explanation:

sqrt(9^(16x^2)) = (9^(16x^2))^(1/2) = 9^((1/2)16x^2)916x2=(916x2)12=9(12)16x2

= (9^(1/2))^(16x^2) = 3^(16x^2)=(912)16x2=316x2 OR =9^((1/2*16)x^2) = 9^(8x^2)=9(1216)x2=98x2

Sep 9, 2015

3^(16x^2)316x2

Explanation:

You can simplify this expression using various properties of radicals and exponents. For example, you know that

color(blue)(sqrt(x) = x^(1/2))" "x=x12 and " "color(blue)((x^a)^b = x^(a * b)) (xa)b=xab

In this case, you would get

sqrt(9^(16x^2)) = [9^(16x^2)]^(1/2) = 9^(16x^2 * 1/2) = 9^(8x^2)916x2=[916x2]12=916x212=98x2

Since you know that 9 = 3^29=32, you can rewrite this as

9^(8x^2) = (3^2)^(8x^2) = 3^(16x^2)98x2=(32)8x2=316x2

Another approach you can use is

sqrt(9^(16x^2)) = sqrt((9^(8x^2))^2) = 9^(8x^2) = 3^(16x^2)916x2=(98x2)2=98x2=316x2

Alternatively, you can also use

sqrt(9^(16x^2)) = sqrt((9^(x^2))^16) = (9^(x^2))^8 = [(3^2)^(x^2)]^8 = 3^(16x^2)916x2=(9x2)16=(9x2)8=[(32)x2]8=316x2