What is the sum of an 8-term geometric sequence if the first term is 10 and the last term is 781,250?
1 Answer
Nov 17, 2015
Explanation:
The common ratio is
sum_(n=1)^8 10*5^(n-1)8∑n=110⋅5n−1
=1/4(5-1)sum_(n=1)^8 10*5^(n-1)=14(5−1)8∑n=110⋅5n−1
=1/4(5 sum_(n=1)^8 10*5^(n-1) - sum_(n=1)^8 10*5^(n-1))=14(58∑n=110⋅5n−1−8∑n=110⋅5n−1)
=1/4(sum_(n=2)^9 10*5^(n-1) - sum_(n=1)^8 10*5^(n-1))=14(9∑n=210⋅5n−1−8∑n=110⋅5n−1)
=1/4(10*5^8 + color(red)(cancel(color(black)(sum_(n=2)^8 10*5^(n-1)))) - color(red)(cancel(color(black)(sum_(n=2)^8 10*5^(n-1)))) - 10)
=1/4(10*5^8-10) = 5/2(5^8-1) = 5/2*390624 = 976560