What is the sum of an 8-term geometric sequence if the first term is 10 and the last term is 781,250?

1 Answer
Nov 17, 2015

976560976560

Explanation:

The common ratio is root(7)(781250/10) = root(7)(78125) = 5778125010=778125=5

sum_(n=1)^8 10*5^(n-1)8n=1105n1

=1/4(5-1)sum_(n=1)^8 10*5^(n-1)=14(51)8n=1105n1

=1/4(5 sum_(n=1)^8 10*5^(n-1) - sum_(n=1)^8 10*5^(n-1))=14(58n=1105n18n=1105n1)

=1/4(sum_(n=2)^9 10*5^(n-1) - sum_(n=1)^8 10*5^(n-1))=14(9n=2105n18n=1105n1)

=1/4(10*5^8 + color(red)(cancel(color(black)(sum_(n=2)^8 10*5^(n-1)))) - color(red)(cancel(color(black)(sum_(n=2)^8 10*5^(n-1)))) - 10)

=1/4(10*5^8-10) = 5/2(5^8-1) = 5/2*390624 = 976560