What is the sum of the geometric sequence 1, 3, 9, … if there are 11 terms?

1 Answer
Jan 21, 2016

Sum=88573Sum=88573

Explanation:

a_2/a_1=3/1=3a2a1=31=3

a_3/a_2=9/3=3a3a2=93=3

implies common ration=r=3=r=3 and a_1=1a1=1

Number of terms=n=11=n=11

Sum of geometric series is given by

Sum=(a(1-r^n))/(1-r)=(1(1-3^11))/(1-3)=(3^11-1)/(3-1)=(177147-1)/2=177146/2=88573Sum=a(1rn)1r=1(1311)13=311131=17714712=1771462=88573

implies Sum=88573Sum=88573