The normal vector perpendicular to a plane is calculated with the determinant
| (veci,vecj,veck), (d,e,f), (g,h,i) |
where 〈d,e,f〉 and 〈g,h,i〉 are the 2 vectors of the plane
Here, we have veca=〈-4,5,-1〉 and vecb=〈2,1,-3〉
Therefore,
| (veci,vecj,veck), (-4,5,-1), (2,1,-3) |
=veci| (5,-1), (1,-3) | -vecj| (-4,-1), (2,-3) | +veck| (-4,5), (2,1) |
=veci(5*-3+1*1)-vecj(4*3+1*2)+veck(-4*1-2*5)
=〈-14,-14,-14〉=vecc
Verification by doing 2 dot products
〈-14,-14,-14〉.〈-4,5,-1〉=-14*-4+-14*5+14*1=0
〈-14,-14,-14〉.〈2,1,-3〉=-28-14+14*3=0
So,
vecc is perpendicular to veca and vecb
||vecc||=sqrt(14^2+14^2+14^2)=14sqrt3
The unit vector is
hatc=1/(||vecc||)vecc=1/(14sqrt3)〈-14,-14,-14〉
= <-1/sqrt3, -1/sqrt3, -1/sqrt3 >