What is the value of? #lim_(x->0)(int_0^x sin t^2.dt)/sin x^2#
1 Answer
# lim_(x rarr 0) (int_0^x sin t^2 dt)/(sin x^2) = 0#
Explanation:
We seek:
# L = lim_(x rarr 0) (int_0^x sin t^2 dt)/(sin x^2)#
Both the numerator and the2 denominator
# L = lim_(x rarr 0) (d/dx int_0^x sin (t^2) dt)/(d/dx sin (x^2) ) #
# \ \ = lim_(x rarr 0) (d/dx int_0^x sin (t^2) dt)/(d/dx sin (x^2) ) #
Now, using the fundamental theorem of calculus:
# d/dx int_0^x sin (t^2) dt = sin(x^2) #
And,
# d/dx sin(x^2) = 2xcos(x^2)#
And so:
# L = lim_(x rarr 0) sin(x^2)/(2xcos(x^2) ) #
Again this is of an indeterminate form
# L = lim_(x rarr 0) (d/dx sin(x^2))/(d/dx 2xcos(x^2) ) #
# \ \ = lim_(x rarr 0) (2xcos(x^2))/(2cos(x^2)-4x^2sin(x^2) ) #
Which, we can evaluate:
# L = (0)/(2-0 ) = 0#