What is the value of?
#sqrt(2+sqrt(3))+sqrt(2-sqrt(3))#
1 Answer
Explanation:
Note that:
#sqrt(2)(sqrt(2+sqrt(3))+sqrt(2-sqrt(3))) = sqrt(4+2sqrt(3))+sqrt(4-2sqrt(3))#
#color(white)(sqrt(2)(sqrt(2+sqrt(3))+sqrt(2-sqrt(3)))) = sqrt(3+2sqrt(3)+1)+sqrt(3-2sqrt(3)+1)#
#color(white)(sqrt(2)(sqrt(2+sqrt(3))+sqrt(2-sqrt(3)))) = sqrt((sqrt(3)+1)^2)+sqrt((sqrt(3)-1)^2)#
#color(white)(sqrt(2)(sqrt(2+sqrt(3))+sqrt(2-sqrt(3)))) = sqrt(3)+1+sqrt(3)-1#
#color(white)(sqrt(2)(sqrt(2+sqrt(3))+sqrt(2-sqrt(3)))) = 2sqrt(3)#
Dividing both ends by
#sqrt(2+sqrt(3))+sqrt(2-sqrt(3)) = sqrt(2)sqrt(3) = sqrt(6)#
Footnote
Why multiply by
When faced with an expression like
However, if we square
#(a^2+3b^2)+2ab sqrt(3)#
Without getting into trying to solve for
What if we multiply the radicand by
Then we get:
#4+2sqrt(3)#
which is recognisable as:
#3+2sqrt(3)+1 = (sqrt(3)+1)^2#
In order to multiply the radicand by
So that's why.
Apologies for the minor but gratuitous rabbit-pulling.