What is the value of |m||m| in root(3)(m+9)=3+root(3)(m-9)3m+9=3+3m9 ?

1 Answer
Oct 2, 2016

|m| = 4sqrt(5)|m|=45

Explanation:

We will make use of the expansion of the cube of a binomial

(a+b)^3 = a^3+3a^2b+3ab^2+b^3(a+b)3=a3+3a2b+3ab2+b3

as well as the quadratic formula

ax^2+bx+c=0 => x = (-b+-sqrt(b^2-4ac))/(2a)ax2+bx+c=0x=b±b24ac2a

Proceeding,

root(3)(m+9) = 3 + root(3)(m-9)3m+9=3+3m9

=> m+9 = (3+root(3)(m-9))^3m+9=(3+3m9)3

=> m+9 = 27 + 27root(3)(m-9) + 9(root(3)(m-9))^2+m-9m+9=27+273m9+9(3m9)2+m9

=> 9(root(3)(m-9))^2 + 27root(3)(m-9) + 9 = 09(3m9)2+273m9+9=0

=> (root(3)(m-9))^2 + 3root(3)(m-9) + 1 = 0(3m9)2+33m9+1=0

=> root(3)(m-9) = (-3+-sqrt((-3)^2-4(1)(1)))/(2(1))3m9=3±(3)24(1)(1)2(1)

=> root(3)(m-9) = (-3+-sqrt(5))/23m9=3±52

=> 2root(3)(m-9) = -3 +-sqrt(5)23m9=3±5

=> 8(m-9) = (-3 +- sqrt(5))^38(m9)=(3±5)3

=> 8m - 72 = -27 +- 27sqrt(5) - 45 +- 15sqrt(5)8m72=27±27545±155

=> 8m - 72 = -72 +- 32sqrt(5)8m72=72±325

=> 8m = +-32sqrt(5)8m=±325

=> m = +-4sqrt(5)m=±45

:. |m| = 4sqrt(5)