We will make use of the expansion of the cube of a binomial
(a+b)^3 = a^3+3a^2b+3ab^2+b^3(a+b)3=a3+3a2b+3ab2+b3
as well as the quadratic formula
ax^2+bx+c=0 => x = (-b+-sqrt(b^2-4ac))/(2a)ax2+bx+c=0⇒x=−b±√b2−4ac2a
Proceeding,
root(3)(m+9) = 3 + root(3)(m-9)3√m+9=3+3√m−9
=> m+9 = (3+root(3)(m-9))^3⇒m+9=(3+3√m−9)3
=> m+9 = 27 + 27root(3)(m-9) + 9(root(3)(m-9))^2+m-9⇒m+9=27+273√m−9+9(3√m−9)2+m−9
=> 9(root(3)(m-9))^2 + 27root(3)(m-9) + 9 = 0⇒9(3√m−9)2+273√m−9+9=0
=> (root(3)(m-9))^2 + 3root(3)(m-9) + 1 = 0⇒(3√m−9)2+33√m−9+1=0
=> root(3)(m-9) = (-3+-sqrt((-3)^2-4(1)(1)))/(2(1))⇒3√m−9=−3±√(−3)2−4(1)(1)2(1)
=> root(3)(m-9) = (-3+-sqrt(5))/2⇒3√m−9=−3±√52
=> 2root(3)(m-9) = -3 +-sqrt(5)⇒23√m−9=−3±√5
=> 8(m-9) = (-3 +- sqrt(5))^3⇒8(m−9)=(−3±√5)3
=> 8m - 72 = -27 +- 27sqrt(5) - 45 +- 15sqrt(5)⇒8m−72=−27±27√5−45±15√5
=> 8m - 72 = -72 +- 32sqrt(5)⇒8m−72=−72±32√5
=> 8m = +-32sqrt(5)⇒8m=±32√5
=> m = +-4sqrt(5)⇒m=±4√5
:. |m| = 4sqrt(5)