What is x if ln(x^2-x)-ln(5x) = -3?

1 Answer
Mar 3, 2016

x=1+5e^(-3)

Explanation:

ln(x^2-x)-ln(5x)=-3

Remember that we only can apply logarithms to positive numbers:

So x^2-x>0 and 5x>0

x(x-1)>0 and x>0 => x>1

Now, let's solve the equation:

ln(x^2-x)=-3+ln(5x)

color(red)(a=ln(e^a)

ln(x^2-x)=ln(e^(-3))+ln(5x)

color(red)(ln(a)+ln(b)=ln(a*b)

ln(x^2-x)=ln(5e^(-3)x)

color(red)(ln(a)=ln(b)=> a=b

x^2-x=5e^(-3)x

x^2-[5e^(-3)+1]x=0

{x-[5e^(-3)+1]}x=0

cancel(x=0)(not in dominium) or x=1+5e^(-3)