Consider DeltaABH, by Pythagorean Theorem, AB^2=AH^2+BH^2 => AB=sqrt(3^2+6^2)=sqrt45=3sqrt5
As DeltaABH and DeltaDBA are similar, => (AD)/(AB)=(HA)/(HB) => AD=(HA)/(HB)*AB=3/6*3sqrt5=(3sqrt5)/2
Given AD=DC, => AC=2AD=3sqrt5
As AC=AB, and angleA=90^@, => angleABC=angleACB=45^@ => DeltaABC is an isosceles right triangle. => BC=ABsqrt2=3sqrt5*sqrt2=3sqrt10