What's the derivative of f(x)=g(x)^(h(x))f(x)=g(x)h(x)?

1 Answer
Sep 20, 2016

f'(x)=g(x)^(h(x)-1)(h'(x)g(x)ln(g(x))+h(x)g'(x))

Explanation:

Using logarithmic differentiation:

ln(f(x))=ln(g(x)^(h(x)))=h(x)ln(g(x))

Differentiating both sides (chain, product rules):

1/f(x)f'(x)=h'(x)ln(g(x))+h(x)1/g(x)g'(x)

1/f(x)f'(x)=(h'(x)g(x)ln(g(x))+h(x)g'(x))/g(x)

Multiply both sides by f(x)=g(x)^(h(x)):

f'(x)=(g(x)^(h(x))(h'(x)g(x)ln(g(x))+h(x)g'(x)))/g(x)

f'(x)=g(x)^(h(x)-1)(h'(x)g(x)ln(g(x))+h(x)g'(x))