What's the derivative of #f(x)=g(x)^(h(x))#?
1 Answer
Sep 20, 2016
Explanation:
Using logarithmic differentiation:
#ln(f(x))=ln(g(x)^(h(x)))=h(x)ln(g(x))#
Differentiating both sides (chain, product rules):
#1/f(x)f'(x)=h'(x)ln(g(x))+h(x)1/g(x)g'(x)#
#1/f(x)f'(x)=(h'(x)g(x)ln(g(x))+h(x)g'(x))/g(x)#
Multiply both sides by
#f'(x)=(g(x)^(h(x))(h'(x)g(x)ln(g(x))+h(x)g'(x)))/g(x)#
#f'(x)=g(x)^(h(x)-1)(h'(x)g(x)ln(g(x))+h(x)g'(x))#