What's the derivative of f(x)=g(x)^(h(x))f(x)=g(x)h(x)?
1 Answer
Sep 20, 2016
Explanation:
Using logarithmic differentiation:
ln(f(x))=ln(g(x)^(h(x)))=h(x)ln(g(x))
Differentiating both sides (chain, product rules):
1/f(x)f'(x)=h'(x)ln(g(x))+h(x)1/g(x)g'(x)
1/f(x)f'(x)=(h'(x)g(x)ln(g(x))+h(x)g'(x))/g(x)
Multiply both sides by
f'(x)=(g(x)^(h(x))(h'(x)g(x)ln(g(x))+h(x)g'(x)))/g(x)
f'(x)=g(x)^(h(x)-1)(h'(x)g(x)ln(g(x))+h(x)g'(x))