The limit:
lim_(x->oo) x arctan(x/(x^2+1))
is in the indeterminate form +oo xx 0. We can reconduce it to the form 0/0 and apply l'Hospital's rule:
lim_(x->oo) x arctan(x/(x^2+1)) = lim_(x->oo) arctan(x/(x^2+1))/(1/x)
lim_(x->oo) x arctan(x/(x^2+1)) = lim_(x->oo) (d/dx arctan(x/(x^2+1)))/(d/dx (1/x))
Now evaluate:
d/dx arctan(x/(x^2+1)) = 1/(1+ (x/(x^2+1))^2) d/dx (x/(x^2+1))
d/dx arctan(x/(x^2+1)) = (x^2+1)^2/(x+ (x^2+1))^2( (x^2+1)-2x^2)/(x^2+1)^2
d/dx arctan(x/(x^2+1)) =-(x^2-1)/(x+ (x^2+1))^2
d/dx arctan(x/(x^2+1)) =-(x^2-1)/(x^4+2x^2+ x+ 1)
Then:
lim_(x->oo) x arctan(x/(x^2+1)) = lim_(x->oo) (-(x^2-1)/(x^4+2x^2+ x+ 1))/(-1/x^2)
lim_(x->oo) x arctan(x/(x^2+1)) = lim_(x->oo) x^2((x^2-1)/(x^4+2x^2+ x+ 1))
lim_(x->oo) x arctan(x/(x^2+1)) = lim_(x->oo) ((x^4-x^2)/(x^4+2x^2+ x+ 1))
lim_(x->oo) x arctan(x/(x^2+1)) = 1
graph{x arctan(x/(x^2+1)) [-10, 10, -5, 5]}