The limit:
#lim_(x->oo) x arctan(x/(x^2+1))#
is in the indeterminate form #+oo xx 0#. We can reconduce it to the form #0/0# and apply l'Hospital's rule:
#lim_(x->oo) x arctan(x/(x^2+1)) = lim_(x->oo) arctan(x/(x^2+1))/(1/x)#
#lim_(x->oo) x arctan(x/(x^2+1)) = lim_(x->oo) (d/dx arctan(x/(x^2+1)))/(d/dx (1/x))#
Now evaluate:
#d/dx arctan(x/(x^2+1)) = 1/(1+ (x/(x^2+1))^2) d/dx (x/(x^2+1))#
#d/dx arctan(x/(x^2+1)) = (x^2+1)^2/(x+ (x^2+1))^2( (x^2+1)-2x^2)/(x^2+1)^2#
#d/dx arctan(x/(x^2+1)) =-(x^2-1)/(x+ (x^2+1))^2#
#d/dx arctan(x/(x^2+1)) =-(x^2-1)/(x^4+2x^2+ x+ 1)#
Then:
#lim_(x->oo) x arctan(x/(x^2+1)) = lim_(x->oo) (-(x^2-1)/(x^4+2x^2+ x+ 1))/(-1/x^2)#
#lim_(x->oo) x arctan(x/(x^2+1)) = lim_(x->oo) x^2((x^2-1)/(x^4+2x^2+ x+ 1))#
#lim_(x->oo) x arctan(x/(x^2+1)) = lim_(x->oo) ((x^4-x^2)/(x^4+2x^2+ x+ 1))#
#lim_(x->oo) x arctan(x/(x^2+1)) = 1#
graph{x arctan(x/(x^2+1)) [-10, 10, -5, 5]}