We know the relations
x=rcostheta and y =rsinthetax=rcosθandy=rsinθ
Again x^2+y^2=r^2x2+y2=r2
where r and thetaθ are the polar coordinate of a point having rectangular coordinate (x,y)(x,y)
The given equation in rectanglar form is
sqrt(x^2+y^2)=6x+7y-x^2y-2xy√x2+y2=6x+7y−x2y−2xy
=>sqrt(r^2)=6rcostheta+7rsintheta-r^3cos^2thetasintheta-2r^2costhetasintheta⇒√r2=6rcosθ+7rsinθ−r3cos2θsinθ−2r2cosθsinθ
=>r=6rcostheta+7rsintheta-r^3cos^2thetasintheta-r^2sin2theta⇒r=6rcosθ+7rsinθ−r3cos2θsinθ−r2sin2θ
=>6costheta+7sintheta-r^2cos^2thetasintheta-rsin2theta=1⇒6cosθ+7sinθ−r2cos2θsinθ−rsin2θ=1
This is the polar form of the given equation.