What the is the polar form of sqrt(x^2+y^2) = 6x+7y-x^2y-2xy x2+y2=6x+7yx2y2xy?

1 Answer
Oct 12, 2016

We know the relations

x=rcostheta and y =rsinthetax=rcosθandy=rsinθ

Again x^2+y^2=r^2x2+y2=r2

where r and thetaθ are the polar coordinate of a point having rectangular coordinate (x,y)(x,y)

The given equation in rectanglar form is

sqrt(x^2+y^2)=6x+7y-x^2y-2xyx2+y2=6x+7yx2y2xy

=>sqrt(r^2)=6rcostheta+7rsintheta-r^3cos^2thetasintheta-2r^2costhetasinthetar2=6rcosθ+7rsinθr3cos2θsinθ2r2cosθsinθ

=>r=6rcostheta+7rsintheta-r^3cos^2thetasintheta-r^2sin2thetar=6rcosθ+7rsinθr3cos2θsinθr2sin2θ

=>6costheta+7sintheta-r^2cos^2thetasintheta-rsin2theta=16cosθ+7sinθr2cos2θsinθrsin2θ=1

This is the polar form of the given equation.