What the is the polar form of y = 1/y^3-xy+x^2/y ?

1 Answer
Feb 18, 2018

Polar form is r^4sin^4theta(1+rcos theta)-r^2cos^2theta*sin^2theta =1

Explanation:

y=1/y^3-xy+x^2/y Multiplying by y^3 on both sides we get,

y^4=1-xy^4+x^2*y^2 or

y^4+xy^4=1+x^2*y^2 or

y^4(1+x)=1+x^2*y^2 or

y^4(1+x)-x^2*y^2 =1

Polar form: x = r costheta and y = r sin theta and x^2+y^2=r^2

r^4sin^4theta(1+rcos theta)-r^4cos^2theta*sin^2theta =1

Polar form is

r^4sin^4theta(1+rcos theta)-r^2cos^2theta*sin^2theta =1 [Ans]