What the is the polar form of y = (y-x)/(x^3+y) y=yxx3+y?

1 Answer
Jul 3, 2016

r^3cos^3thetasintheta+rsin^2theta=(sintheta-costheta)r3cos3θsinθ+rsin2θ=(sinθcosθ)

Explanation:

When polar coordinate are (r,theta)(r,θ) and corresponding Cartesian coordinates are (x,y)(x,y), the relation between them is x=rcoxthetax=rcθ and y=rsinthetay=rsinθ and r^2=x^2+y^2r2=x2+y2.

Hence y=(y-x)/(x^3+y)y=yxx3+y can be written as x^3y+y^2=y-xx3y+y2=yx or

r^4cos^3thetasintheta+r^2sin^2theta=r(sintheta-costheta)r4cos3θsinθ+r2sin2θ=r(sinθcosθ)

or r^3cos^3thetasintheta+rsin^2theta=(sintheta-costheta)r3cos3θsinθ+rsin2θ=(sinθcosθ)