What volume does 0.0250 mole H_2H2 occupy at 0.821 atm pressure and 300 K?

2 Answers
Nov 20, 2015

The volume is "0.750 dm"^30.750 dm3

Explanation:

Hydrogen behaves like an ideal gas.

P*V=n*R*TPV=nRT, where

P = "the pressure" = 0.821 color(red)(cancel(color(black)("atm")))*(1.01325*10^5 "Pa")/(1 color(red)(cancel(color(black)("atm"))))

P = "83 190" color(red)(cancel(color(black)("Pa"))) * "1N/m"^2/(1 color(red)(cancel(color(black)("Pa")))) = "83 190 N/m"^2

T= "the temperature"

n = "number of moles"

R= "ideal gas constant" = 8.314 color(red)(cancel(color(black)("J")))//("K·mol") * "1 N·m"/(1 color(red)(cancel(color(black)("J")))) = "8.314 N·m/(K·mol)"

V = "the volume"

V=(n*R*T)/P

V=((0.250 color(red)(cancel(color(black)("mol"))) * 8.314 color(red)(cancel(color(black)("N")))*"m")//(color(red)(cancel(color(black)("K·mol")))) · 300 color(red)(cancel(color(black)("K"))))/("83 190" color(red)(cancel(color(black)("N")))//"m"^2)

V = 7.50*10^-4 " m"^3 = "0.750 dm"^3

Nov 20, 2015

The volume will be "0.7 L".

Explanation:

Use the ideal gas law.

PV=nRT, where n is moles, and R is the gas constant.

Given/Known
P="0.821 atm"
n="0.0250 mol"
R="0.082057338 L atm K"^(-1) "mol"^(-1)
T="300 K"

Unknown

V

Equation

PV=nRT

Solution
Rearrange the equation to isolate V and solve.

V=(nRT)/P

V=((0.0250cancel"mol"xx0.08205733" L" cancel"atm" cancel("K"^(-1)) cancel("mol"^(-1)) xx 300cancel"K"))/(0.821cancel"atm")="0.7 L" (rounded to one significant figure due to 300 K)