What will be the volume of the cylinder: x^2 + y^2 = 4 and the planes y+z=4 and z=0?

1 Answer
May 18, 2018

16 pi

Explanation:

Cylindrical Volume:

V = int_V r \ dr \ dz \ d theta

= int_(theta = 0)^(2 pi) int_(r=0)^(2) int_(z=0)^(4 - r sin theta) \ r \ dz \ dr \ d theta

= int_(theta = 0)^(2 pi) int_(r=0)^(2) \ (rz)_(z=0)^(4 - r sin theta) \ dr \ \ d theta

= int_(theta = 0)^(2 pi) int_(r=0)^(2) \ 4 r - r^2 sin theta \ dr \ \ d theta

= int_(theta = 0)^(2 pi) ( \ 2r^2 - r^3/3 sin theta )_(r=0)^(2) \ \ d theta

= int_(theta = 0)^(2 pi) \ 8 - 8/3 sin theta \ \ d theta

= ( \ 8theta + 8/3 cos theta \ )_(theta = 0)^(2 pi)

= 16pi

This is same as:

  • pi (2^2) * 2 + pi (2^2) * (6 - 2)/2 = 16 pi

...which you get if you just splice and dice the cylinder using symmetry