Where does the graph of ln(x)-(ln(7-x))-9=yln(x)(ln(7x))9=y cross the x-axis?

1 Answer

The graph crosses the x-axis at (6.999136, 0)(6.999136,0)

Explanation:

From the given equation:
ln (x)-ln(7-x)-9=yln(x)ln(7x)9=y

set y=0y=0 then solve for xx

ln (x)-ln(7-x)-9=0ln(x)ln(7x)9=0
ln(x/(7-x))=9ln(x7x)=9

(x/(7-x))=e^9(x7x)=e9

x=e^9*(7-x)x=e9(7x)

x=7*e^9-e^9*xx=7e9e9x

(1+e^9)x=7*e^9(1+e9)x=7e9

(cancel((1+e^9))x)/cancel(1+e^9)=(7*e^9)/(1+e^9)

x=(7*e^9)/(1+e^9)

x=6.999136

The graph crosses the x-axis at (6.999136, 0)

Kindly check the graph ....

graph{y=ln x-ln(7-x)-9[-10,10,-20,20]}

Have a nice day !!! from the Philippines...