Why can't you integrate 1+(cosxsinx)2?

1 Answer
Jan 29, 2015

The answer is: lntan(x2)+c

First of all it's useful to "change" a little the function:

y=1+(cosxsinx)2=1+cos2xsin2x=sin2x+cos2xsin2x=1sin2x=1sinx.

I used the first fondamental relation of trigonometry: sin2x+cos2x=1

So we have to integrate: 1sinxdx.

Before integrate this function, it is useful to remember the parametric formula of sinus, that says:

sinx=2t1+t2, where t=tan(x2).

Now the integral will be done with the method of substitution:

tan(x2)=tx2=arctantx=2arctantdx=2(11+t2)dt.

Our integral becoms:

1sinxdx=12t1+t22(11+t2)dt=1+t22t2(11+t2)dt=1tdt=ln|t|+c=lntan(x2)+c