Without using calculator or table of multiplication, show that cos 255° = (sqrt2-sqrt6)/4.?

1 Answer
Apr 11, 2018

LHS=cos 255°

=cos (180^@+75^@)

=-cos (75^@)

=-cos (45^@+30^@)

=-(cos 45^@cos30^@-sin45^@sin30^@)

=-(1/sqrt2xxsqrt3/2-1/sqrt2xx1/2)

=-1/sqrt2xxsqrt3/2+1/sqrt2xx1/2)

=-sqrt6/4+sqrt2/4

= (sqrt2-sqrt6)/4=RHS