Would# f(x)=root(3)( -x+2)# be a odd function?

1 Answer
Oct 29, 2016

No; it is neither odd nor even.

Explanation:

The test for odd is #f(-x) = -f(x)#:

#f(-x) = root(3)(-(-x) + 2) = root(3)(x + 2)#

#-f(x) = -root(3)(-x + 2) = root(3)((-1)^3(-x + 2)) = root(3)(x - 2)#

#root(3)(x - 2) !=root(3)(x + 2)#

Not odd

The test for even is #f(x) = f(-x)#

#root(3)(-x + 2) != root(3)(x + 2)#

Not even.

#:.# Neither