Would f(x)=root(3)( -x+2)f(x)=3x+2 be a odd function?

1 Answer
Oct 29, 2016

No; it is neither odd nor even.

Explanation:

The test for odd is f(-x) = -f(x)f(x)=f(x):

f(-x) = root(3)(-(-x) + 2) = root(3)(x + 2)f(x)=3(x)+2=3x+2

-f(x) = -root(3)(-x + 2) = root(3)((-1)^3(-x + 2)) = root(3)(x - 2)f(x)=3x+2=3(1)3(x+2)=3x2

root(3)(x - 2) !=root(3)(x + 2)3x23x+2

Not odd

The test for even is f(x) = f(-x)f(x)=f(x)

root(3)(-x + 2) != root(3)(x + 2)3x+23x+2

Not even.

:. Neither