In terms of x and y only, how would you write the following expression? sin(tan^-1 x+cos^-1 y)

1 Answer
Dec 6, 2016

sin(tan^-1x+cos^-1y)

Let tan^-1x=A=>x=tanA

Now

sinA=tanAcosA=tanA/secA

=tanA/sqrt(1+tan^2A)

=x/sqrt(1+x^2)

cosA=1/secA=1/sqrt(1+tan^2A)=1/sqrt(1+x^2)

Again let cos^-1y=B=>y=cosB

So sinB=sqrt(1-cos^2B)=sqrt(1-y^2)

Now the given expression

=sin(tan^-1x+cos^-1y)

=sin(A+B)=sinAcosB+cosAsinB

=x/sqrt(1+x^2)xxy+1/sqrt(1+x^2)xxsqrt(1-y^2)

=(xy+sqrt(1-y^2))/sqrt(1+x^2)