Write the quadratic function f(x) = x2 + 8x + 3 in vertex form? A) f(x) = (x - 4)2 - 13 B) f(x) = (x - 4)2 + 3 C) f(x) = (x + 4)2 + 3 D) f(x) = (x + 4)2 - 13
1 Answer
Explanation:
Given the following function, you are asked to convert it to vertex form:
f(x)=x^2+8x+3f(x)=x2+8x+3
The given possible solutions are:
"A") f(x)=(x-4)^2-13A)f(x)=(x−4)2−13
"B") f(x)=(x-4)^2+3B)f(x)=(x−4)2+3
"C") f(x)=(x+4)^2+3C)f(x)=(x+4)2+3
"D") f(x)=(x+4)^2-13D)f(x)=(x+4)2−13
Converting to Vertex Form
f(x)=x^2+8x+3f(x)=x2+8x+3
f(x)=(x^2+8x)+3f(x)=(x2+8x)+3
f(x)=(x^2+color(blue)8x+(color(blue)8/2)^2)+3f(x)=(x2+8x+(82)2)+3
f(x)=(x^2+8x+(8/2)^2-(8/2)^2)+3f(x)=(x2+8x+(82)2−(82)2)+3
f(x)=(color(violet)1x^2+8x+(8/2)^2)+3-((8/2)^2xxcolor(violet)1)f(x)=(1x2+8x+(82)2)+3−((82)2×1)
f(x)=(x^2+8x+16)+3-16f(x)=(x2+8x+16)+3−16
f(x)=(x^2+8x+16)-13f(x)=(x2+8x+16)−13
color(green)(|bar(ul(color(white)(a/a)f(x)=(x+4)^2-13color(white)(a/a)|)))