Write the quadratic function f(x) = x2 + 8x + 3 in vertex form? A) f(x) = (x - 4)2 - 13 B) f(x) = (x - 4)2 + 3 C) f(x) = (x + 4)2 + 3 D) f(x) = (x + 4)2 - 13

1 Answer
Mar 27, 2016

"D": f(x)=(x+4)^2-13D:f(x)=(x+4)213

Explanation:

Given the following function, you are asked to convert it to vertex form:

f(x)=x^2+8x+3f(x)=x2+8x+3

The given possible solutions are:

"A") f(x)=(x-4)^2-13A)f(x)=(x4)213
"B") f(x)=(x-4)^2+3B)f(x)=(x4)2+3
"C") f(x)=(x+4)^2+3C)f(x)=(x+4)2+3
"D") f(x)=(x+4)^2-13D)f(x)=(x+4)213

Converting to Vertex Form
11. Start by placing brackets around the first two terms.

f(x)=x^2+8x+3f(x)=x2+8x+3

f(x)=(x^2+8x)+3f(x)=(x2+8x)+3

22. In order to make the bracketed terms a perfect square trinomial, we must add a "color(darkorange)cc" term as in ax^2+bx+color(darkorange)cax2+bx+c. Since color(darkorange)cc, in a perfect square trinomial is denoted by the formula color(darkorange)c=(color(blue)b/2)^2c=(b2)2, take the value of color(blue)bb to find the value of color(darkorange)cc.

f(x)=(x^2+color(blue)8x+(color(blue)8/2)^2)+3f(x)=(x2+8x+(82)2)+3

33. However, adding (8/2)^2(82)2 would change the value of the equation. Thus, subtract (8/2)^2(82)2 from the (8/2)^2(82)2 you just added.

f(x)=(x^2+8x+(8/2)^2-(8/2)^2)+3f(x)=(x2+8x+(82)2(82)2)+3

44. Multiply (-(8/2)^2)((82)2) by the color(violet)aa term as in color(violet)ax^2+bx+cax2+bx+c to bring it outside the brackets.

f(x)=(color(violet)1x^2+8x+(8/2)^2)+3-((8/2)^2xxcolor(violet)1)f(x)=(1x2+8x+(82)2)+3((82)2×1)

55. Simplify.

f(x)=(x^2+8x+16)+3-16f(x)=(x2+8x+16)+316

f(x)=(x^2+8x+16)-13f(x)=(x2+8x+16)13

66. Lastly, factor the perfect square trinomial.

color(green)(|bar(ul(color(white)(a/a)f(x)=(x+4)^2-13color(white)(a/a)|)))