(x-7)² + (y+24)² = 196 Min (x²+y²)= ?

2 Answers
May 2, 2017

See below.

Explanation:

(x_0,y_0) = (77/25, -264/25)

This is the tangency point between the circle

x^2+y^2=11^2

and the circle

(x-7)^2+(y+24)^2=14^2

enter image source here

May 2, 2017

121.

Explanation:

Observe that, S : (x-7)^2+(y+24)^2=196, represents a circle

with Centre at C( 7,-24) and Radius r=sqrt196=14.

The Parametric Eqns. of S are given by,

x=7+14costheta, y=-24+14sintheta, theta in [0,2pi).

:. x^2+y^2=(7+14costheta)^2+(-24+14sintheta)^2,

=(7^2+2*7*14costheta+14^2cos^2theta)

+(24^2-2*24*14sintheta+14^2sin^2theta),

=(7^2+24^2)+2*14(7costheta-24sintheta)+14^2(1),

=25^2+14^2+28*25(7/25costheta-24/25sintheta).

Letting, 7/25=cosalpha," so that, "sinalpha=24/25, we find,

x^2+y^2=25^2+14^2+25*28cos(theta+alpha).

Since, the Minimum Value of cos" function is, "-1,

We conclude that the Reqd. Minima is, 25^2+14^2-25*28

=25^2-2*25*14+14^2=(25-14)^2=121.

Enjoy Maths.!