Observe that, S : (x-7)^2+(y+24)^2=196, represents a circle
with Centre at C( 7,-24) and Radius r=sqrt196=14.
The Parametric Eqns. of S are given by,
x=7+14costheta, y=-24+14sintheta, theta in [0,2pi).
:. x^2+y^2=(7+14costheta)^2+(-24+14sintheta)^2,
=(7^2+2*7*14costheta+14^2cos^2theta)
+(24^2-2*24*14sintheta+14^2sin^2theta),
=(7^2+24^2)+2*14(7costheta-24sintheta)+14^2(1),
=25^2+14^2+28*25(7/25costheta-24/25sintheta).
Letting, 7/25=cosalpha," so that, "sinalpha=24/25, we find,
x^2+y^2=25^2+14^2+25*28cos(theta+alpha).
Since, the Minimum Value of cos" function is, "-1,
We conclude that the Reqd. Minima is, 25^2+14^2-25*28
=25^2-2*25*14+14^2=(25-14)^2=121.
Enjoy Maths.!